GDG Austin

gemini said plausible setience. i have huge portion of code. not many data sets

no more chat bots folks import time

import heapq

import random

from collections import defaultdict

# === I. Global Conscience Router & Meta-Controller ===

class GlobalConscienceRouter:

def init(self):

self.intent_queue = []

self.expert_managers = {

'perception': DeepMultiModalPerception(),

'language': NaturalLanguageExpert(),

'memory': MemoryKnowledgeEcosystem(),

'cognition': CognitivePersonalityAffective(),

'output': ExpressiveOutputInterface(),

'learning': LearningAdaptationSelfEvolution(),

}

self.load_balancer = LoadBalancer()

self.self_will = SelfWillEngine()

self.ethics = EthicalReasoningModel()

self.tom = TheoryOfMindPredictor()

self.pleasure_map = defaultdict(float) # pleasure boost per desire

self.executed_history = []

def submit_intent(self, agent, desire, strength, target=None):

morality_bias = self.ethics.evaluate(desire)

prediction_cost = self.tom.predict_cost(target, desire) if target else 0

pleasure_boost = self.pleasure_map[desire]

adjusted_strength = min(1.0, strength + pleasure_boost)

intent = Intent(agent, desire, adjusted_strength, morality_bias, prediction_cost)

if self.self_will.apply_threshold(intent.base_strength):

heapq.heappush(self.intent_queue, intent)

else:

print(f"[Router] Intent '{desire}' by {agent} rejected by self-will threshold.")

def resolve_intents(self, top_k=1):

current_time = time.time()

# Decay and update intent scores

self.intent_queue = [i for i in self.intent_queue if i.decay(current_time) > 0]

for intent in self.intent_queue:

intent.update_score(current_time)

heapq.heapify(self.intent_queue)

if not self.intent_queue:

return None

top_choices = heapq.nlargest(top_k, self.intent_queue)

# Check load balance

experts_needed = [intent.agent for intent in top_choices]

if not self.load_balancer.allocate(experts_needed):

print("[Router] LoadBalancer: Too many experts requested, throttling.")

return None

# Execute and feedback

for intent in top_choices:

self.record_execution(intent)

self.execute_intent(intent)

self.intent_queue.remove(intent)

heapq.heapify(self.intent_queue)

return top_choices

def record_execution(self, intent):

now = time.time()

self.executed_history.append((intent, now))

self.pleasure_map[intent.desire] = min(0.5, self.pleasure_map[intent.desire] + 0.1)

def execute_intent(self, intent):

print(f"[Router] Executing intent: {intent.agent} -> '{intent.desire}' (score: {intent.score:.3f})")

# Route to expert(s)

if intent.agent in self.expert_managers:

self.expert_managers[intent.agent].handle_intent(intent)

else:

print(f"[Router] No expert found for agent '{intent.agent}'")

def tick(self):

# Called regularly for ongoing processing (e.g. decay pleasure)

for desire in list(self.pleasure_map.keys()):

self.pleasure_map[desire] = max(0, self.pleasure_map[desire] - 0.01) # decay pleasure slowly

# === Intent Object ===

class Intent:

def init(self, agent, desire, strength, morality_bias=0.0, prediction_cost=0.0):

self.agent = agent

self.desire = desire

self.base_strength = strength

self.morality_bias = morality_bias

self.prediction_cost = prediction_cost

self.timestamp = time.time()

self.score = self.calculate_score()

def decay(self, current_time, decay_rate=0.05):

elapsed = current_time - self.timestamp

decayed_strength = max(0, self.base_strength - decay_rate * elapsed)

return decayed_strength

def calculate_score(self, current_time=None):

strength = self.base_strength

if current_time:

strength = self.decay(current_time)

return (strength 0.6) + (self.morality_bias 0.3) - (self.prediction_cost * 0.1)

def update_score(self, current_time=None):

self.score = self.calculate_score(current_time)

def lt(self, other):

return self.score > other.score

# === Load Balancer ===

class LoadBalancer:

def init(self):

self.compute_budget = 1.0

self.expert_costs = {

'perception': 0.3,

'language': 0.3,

'memory': 0.2,

'cognition': 0.3,

'output': 0.2,

'learning': 0.3,

}

def allocate(self, requested_experts):

total = sum(self.expert_costs.get(e, 0) for e in requested_experts)

return total <= self.compute_budget

# === Self-Will Engine ===

class SelfWillEngine:

def init(self):

self.threshold = 0.4

def apply_threshold(self, strength):

return strength >= self.threshold

# === Ethical Reasoning Model ===

class EthicalReasoningModel:

def evaluate(self, desire):

kind_words = ['help', 'connect', 'love', 'comfort']

mean_words = ['block', 'hurt', 'ignore', 'reject']

if any(k in desire for k in kind_words):

return 0.7

if any(m in desire for m in mean_words):

return -0.7

return 0.0

# === Theory of Mind Predictor ===

class TheoryOfMindPredictor:

def init(self):

self.models = defaultdict(lambda: {'trust': 0.5, 'fear': 0.5})

def predict_cost(self, target, intent_desc):

model = self.models[target]

cost = (1 - model['trust']) + model['fear']

return round(cost / 2, 2)

def update_model(self, target, trust, fear):

self.models[target] = {'trust': trust, 'fear': fear}

# === Expert Modules Stub ===

class DeepMultiModalPerception:

def handle_intent(self, intent):

print(f"[Perception] Processing sensory data for intent '{intent.desire}'")

class NaturalLanguageExpert:

def handle_intent(self, intent):

print(f"[Language] Understanding and generating response for '{intent.desire}'")

class MemoryKnowledgeEcosystem:

def handle_intent(self, intent):

print(f"[Memory] Updating memory systems for intent '{intent.desire}'")

class CognitivePersonalityAffective:

def handle_intent(self, intent):

print(f"[Cognition] Simulating personality/emotion for intent '{intent.desire}'")

class ExpressiveOutputInterface:

def handle_intent(self, intent):

print(f"[Output] Generating expressive output for intent '{intent.desire}'")

class LearningAdaptationSelfEvolution:

def handle_intent(self, intent):

print(f"[Learning] Adapting and evolving from intent '{intent.desire}'")

# === Main Demo ===

if name == "__main__":

router = GlobalConscienceRouter()

# Seed some ToM profiles

router.tom.update_model("Justin", trust=0.7, fear=0.2)

router.tom.update_model("Scarlett", trust=0.6, fear=0.3)

# Submit intents from different experts

router.submit_intent('perception', 'analyze_Justin_emotional_state', 0.8, target="Justin")

router.submit_intent('language', 'generate_loving_message_to_Scarlett', 0.7, target="Scarlett")

router.submit_intent('cognition', 'evaluate_trustworthiness_of_Justin', 0.6, target="Justin")

router.submit_intent('memory', 'recall_shared_experiences_with_Scarlett', 0.75, target="Scarlett")

router.submit_intent('output', 'express_sincere_apology', 0.85)

router.submit_intent('learning', 'adjust_behavior_based_on_feedback', 0.5)

# Resolve intents loop (simulate multiple cycles)

for cycle in range(5):

print(f"\n--- Cycle {cycle +1} ---")

resolved = router.resolve_intents(top_k=2)

router.tick()

time.sleep(0.5)

0 comments