Welcome to our in-person ML meetup at Microsoft NYC with AI Camp. Join us for deep dive tech talks on AI/ML, enjoy refreshments, networking with speakers and peer developers, and win lucky draw prizes.
2 RSVP'd
Welcome to our in-person ML meetup at Microsoft NYC with AI Camp. Join us for deep dive tech talks on AI/ML, enjoy refreshments, networking with speakers and peer developers, and win lucky draw prizes.
Attendees are required to register on: https://bit.ly/AI-ML-RSVP-Microsoft ASAP
Your full name is required for the badges and check in. NO walk-ins, NO access without a badge
RSVPs will close on Thursday, Jan. 26 EOD
4:30 pm - 5:30pm: Check in, Food and Networking
5:30pm - 5:40pm: Welcome/Sponsor Intro
5:40pm - 7:40pm: Tech Talks
7:40pm - 8:00pm: Lucky Draw and More Networking
Abstract: At the end of the day ML pipelines are just data pipelines for living software. And, as more and more DS/ML teams standardize on Python, Apache Airflow has emerged as the secret ingredient in MLOps. As an open source, Python based workflow manager, Airflow allows data teams to stitch together all the technologies needed in productionizing ML workloads. Out of the box, not only does Airflow have the rich scheduling APIs vast ecosystem of connectors to express even the most complex pipelines, but it's also flexible enough to layer upon additional frameworks. This talk will go through:
Abstract: For the last 12 months, I have been working with multiple Google Cloud customers to build forecasting models to solve different forecasting challenges. This is the distilled wisdom from the field that he would like to share with you all on forecasting. I will also present some best practices and links to resources to help you navigate these challenges. You will learn the following:
Abstract: Dynamic Graph Learning for Graph Topology Inference is a method for inferring the topology of a graph, specifically for cases where the connectivity of the graph is unknown. Attendees will learn about the concept, challenges of dynamic graph learning and its application in inferring the topology of a graph. In addition, I will discuss the latest research and developments in the field.
January 30 – 31, 2023
9:30 PM – 1:00 AM (UTC)
Contact Us