AutoML, MLOps and Graph Machine Learning with AI Camp

Microsoft NYC - Times Square - 11 Times Square, Room Name and Number: Central Park West, #6501 New York, 10036 - View Map GDG NYC
Mon, Jan 30, 4:30 PM (EST)

2 RSVP'ed

Welcome to our in-person ML meetup at Microsoft NYC with AI Camp. Join us for deep dive tech talks on AI/ML, enjoy refreshments, networking with speakers and peer developers, and win lucky draw prizes.

Get Tickets

About this event



Welcome to our in-person ML meetup at Microsoft NYC with AI Camp. Join us for deep dive tech talks on AI/ML, enjoy refreshments, networking with speakers and peer developers, and win lucky draw prizes.

[Important RSVP instructions]

Attendees are required to register on: https://bit.ly/AI-ML-RSVP-Microsoft ASAP
Your full name is required for the badges and check in. NO walk-ins, NO access without a badge
RSVPs will close on Thursday, Jan. 26 EOD

Agenda:

4:30 pm - 5:30pm: Check in, Food and Networking

5:30pm - 5:40pm: Welcome/Sponsor Intro

5:40pm - 7:40pm: Tech Talks

7:40pm - 8:00pm: Lucky Draw and More Networking

Tech Talk 1: MLOps with Apache Airflow
Speakers: Julian LaNeve, Benjamin Lampel @Astronomer

Abstract: At the end of the day ML pipelines are just data pipelines for living software. And, as more and more DS/ML teams standardize on Python, Apache Airflow has emerged as the secret ingredient in MLOps. As an open source, Python based workflow manager, Airflow allows data teams to stitch together all the technologies needed in productionizing ML workloads. Out of the box, not only does Airflow have the rich scheduling APIs vast ecosystem of connectors to express even the most complex pipelines, but it's also flexible enough to layer upon additional frameworks. This talk will go through:

  • A high level introduction to Airflow
  • Various ML architectures used by members of the Airflow community
  • A demo of AstroPythonSDK; a new OSS project that makes it easier for data scientists to write production quality pipelines.

Tech Talk 2: Best Practices and Learnings for ML Forecasting
Speaker: Ram Seshadri @Google

Abstract: For the last 12 months, I have been working with multiple Google Cloud customers to build forecasting models to solve different forecasting challenges. This is the distilled wisdom from the field that he would like to share with you all on forecasting. I will also present some best practices and links to resources to help you navigate these challenges. You will learn the following:

  • How forecasting differs from classical ML (regression)
  • How to set up your forecasting team for success
  • Pitfalls you need to avoid in your forecasting projects

Tech Talk 3: Dynamic Graph Learning for Graph Topology Inference
Speaker: Lev Telyatnikov, PhD candidate @Sapienza University of Rome

Abstract: Dynamic Graph Learning for Graph Topology Inference is a method for inferring the topology of a graph, specifically for cases where the connectivity of the graph is unknown. Attendees will learn about the concept, challenges of dynamic graph learning and its application in inferring the topology of a graph. In addition, I will discuss the latest research and developments in the field.

When

Monday, Jan 30
4:30 PM - 8:00 PM (EST)

Where

Microsoft NYC - Times Square
11 Times Square, Room Name and Number: Central Park West, #6501 New York10036

Host

  • Josie Strange-Christie

    Josie Strange-Christie

    Microsoft

    Senior Technical Program Manager - Product Analytics

    See Bio

Organizers