In this codelab, you will learn how to build and train a neural network that recognises handwritten digits. Along the way, as you enhance your neural network to achieve 99% accuracy, you will also discover the tools of the trade that deep learning professionals use to train their models efficiently.
This codelab uses the MNIST dataset, a collection of 60,000 labeled digits that has kept generations of PhDs busy for almost two decades. You will solve the problem with less than 100 lines of Python / TensorFlow code.
What you'll learn
- What is a neural network and how to train it
- How to build a basic 1-layer neural network using tf.keras
- How to add more layers
- How to set up a learning rate schedule
- How to build convolutional neural networks
- How to use regularisation techniques: dropout, batch normalization
- What is overfitting
What you'll need
Just a browser. This workshop can be run entirely with Google Colaboratory.
CGG / GDG London
ML Engineer
techpowergirls
GDG Organizer
sitecore
PM / GDG Organizer
Wipro
Senior Architect / GDG Organizer
GDG Organizer
Okta
GDG Organizer
Second Year Electronic Engineering student
Pursuing Bachelors in Electronic Engineering