In this session, my major aim would be to provide an overview of the different tools one could use to power their Android apps with Machine Learning and also discuss the new additions for Machine Learning in Android 11 specifically the Model Binding Plugin and ML Kit. I would first go on to explain the standard procedure of using pre-trained models with MLKit. I would show how we could take the idea of MLKit forward and use pre-trained models from TensorFlow Hub to run right in the app, which would provide support to build high-quality machine learning apps based on models contributed from the community. I would then show how we could use custom TFLite models in Android apps, I would also talk about TensorFlow Model Maker and ML Model binding plugin in Android Studio through which I plan to show how easy it is to now use custom TF Lite models in Android apps. With Android 11 the NN API now supports Asymmetric integer weights making model sizes and inferences even smaller opening up an even larger opportunities for edge ML.
Narayana School, Mumbai, India
TEDx, TED-Ed Speaker
Rishit Dagli is a grade 11 student and is a TEDx, TED-Ed Speaker.
Kuwait University
GDG Organizer
GDG Organizer
GDG Organizer
Nabd
GDG Organizer
GDG Organizer
GDG Organizer
Lmeter Real Estate Organization
GDG Organizer
Kuwait university, GDG Kuwait.
GDG Organizer
GDG Orgnizer
Media Phone Plus
IT project Manager
GDG Organizer
UI/UX Designer
Student and Volunteer
re:food
Operations Executive
Boursa Kuwait
IT
CEO, Founder
GDG Organizer
GDG Organizer
Ilimits
Business Development Manager